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By A. POTHÉRAT1, J. SOMMERIA2 AND R. MOREAU3

1Ilmenau Technical University, Faculty of Electrical Engineering, Kirchhoffbau,
Kirchhoffstrasse 1, 98693 Ilmenau, Germany

2LEGI (CNRS), ENSHMG BP 95 38402 Saint Martin d’Hères Cedex, France
3Laboratoire EPM-MADYLAM (CNRS) ENSHMG BP 95 38402 Saint Martin d’Hères Cedex, France

(Received 8 October 2003 and in revised form 30 September 2004)

This paper presents simulations of the two-dimensional model developed by Pothérat
et al. (2000) for MHD flows between two planes with a strong transverse homogeneous
and steady magnetic field, accounting for moderate inertial effects in Hartmann
layers. We first show analytically how the additional terms in the equations of
motion accounting for inertia soften velocity gradients in the horizontal plane, and
then we implement the model in a code to carry out numerical simulations to be
compared with available experimental results. This comparison shows that the new
model can give very accurate results as long as the Hartmann layer remains laminar.
Both experimental velocity profiles and global angular momentum measurements are
recovered, and local and global Ekman recirculations are shown to alter significantly
the shape of the flow as well as the global dissipation.

1. Introduction
The velocity field in liquid metal flows under a strong magnetic field tends to vary

very little along the magnetic field lines so that in many situations such flows are
almost two-dimensional. This striking property of this particular kind of MHD flow
was first studied in the 1970s (Kolesnikov & Tsinober 1974) and can be observed in
many laboratory experiments and industrial applications (Bühler 1996). For instance,
it can drastically modify heat and mass transfer in the liquid-metal blankets used in
Tokamak-type nuclear fusion reactors. These blankets carry a liquid metal confined
between two planes, and are subjected to a typical 10 T magnetic field, required to
confine hot plasma inside the reactor. Their role is to evacuate the heat generated
by nuclear fusion within the plasma and to regenerate the tritium which feeds the
reaction itself. The efficiency of the whole device is therefore tightly bound up with
the properties of the quasi-two-dimensional turbulent flow which takes place within
the blankets.

The fact that the velocity is almost uniform along the magnetic field lines, except
in the vicinity of walls non-parallel to the field where thin boundary layers develop
(Hartmann layers), provides interesting perspectives for modelling. It is tempting to
derive a simplified effective two-dimensional equation for the outer velocity from the
full three-dimensional equations. This is achieved by averaging the full Navier–Stokes
equations along the direction of the magnetic field, which yields a two-dimensional
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model. The advantages of this approach are numerous. Firstly, it saves a significant
amount of computational resources as the three-dimensional problem is replaced
by a two-dimensional one. Secondly, when the boundary layer is thin, the analytical
treatment in a two-dimensional model may be more accurate than a three-dimensional
numerical solution that cannot adequately resolve the boundary layer (see Tagawa,
Authié & Moreau 2002). Finally, this approach is general, because these models rely
solely on assumptions on the values of non-dimensional numbers and include no
empirical assumptions or empirical parameters. It is also a general approach in the
sense that two-dimensional models involve no assumptions on the component of the
flow perpendicular to the direction of the magnetic field (it can be turbulent for
instance). This approach itself is not new and has already been successfully used
in MHD (Verron & Sommeria 1987; Bühler 1996; Pothérat, Sommeria & Moreau
2000) for flows confined between parallel planes. It was used before this to model
rotating fluid layers such as oceans and atmospheres (see for instance Greenspan
1969; Pedlosky 1987). Flows dominated by a strong rotation are indeed analogous to
MHD flows in the sense that the velocity also varies little along the rotation vector,
except in the vicinity of walls where Ekman boundary layers develop.

The physical problem of particular interest in this paper is that of MHD flows
confined between two parallel horizontal plates and placed in a strong, vertical, steady
and uniform magnetic field B. The flow is driven by injection of current at one of the
plates. The references to horizontal and vertical directions are for ease of description
as gravity has no relevance here. This problem exhibits all the features of the quasi-
two-dimensional flows described above. It is of interest in industrial applications
(nuclear fusion reactor blankets as well as continuous casting of steel processes)
and in laboratory experiments. In most of these situations, the magnetic Reynolds
number Rm is small so that the change in B due to the currents induced by the flow is
O(Rm) and may be neglected. In such cases, Sommeria & Moreau (1982) have shown
that electromagnetic effects reduce to diffusion of momentum along the magnetic
field lines. If this phenomenon is stronger than inertial effects (i.e. the interaction
parameter N , which represents the ratio of electromagnetic and inertial forces is
greater than unity) and viscous effects (i.e. the Hartmann number Ha, the square
of which represents the ratio of electromagnetic and viscous forces, is greater than
unity), then the flow is two-dimensional, except in the vicinity of walls non-parallel
to the magnetic field where viscosity balances electromagnetic effects to give rise to
the Hartmann boundary layer (see for instance Moreau 1990). Sommeria & Moreau
(1982) have derived a two-dimensional model (denoted SM82 hereafter) based on
the simple exponential profile of Hartmann layers. It gives good results in problems
where inertia is small (see Pothérat et al. 2000 and Delannoy et al. 1999) but fails to
describe flows where strong rotation gives rise to three-dimensional secondary flows,
such as Ekman pumping. Pothérat et al. (2000) have developed a two-dimensional
model accounting for such phenomena (denoted PSM2000 hereafter). We shall use
both models here in order to explain the results of two MHD experiments which
have not been modelled up to now: Sommeria’s (1988) electrically driven vortices and
the MATUR experiment. The example of PSM2000 emphasizes that two-dimensional
models can be highly refined to account for rather complex three-dimensional flows,
whilst still retaining the advantages of working in two-dimensions. This underlines
the flexibility of two-dimensional models.

The layout of the paper is as follows: in § 2, we briefly summarize the principles
of two-dimensional models and describe SM82 and PSM2000. We also show that the
effect of local three-dimensional recirculations accounted for in the latter is to smooth
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Figure 1. General flow configuration, with control volume V to which momentum con-
servation is applied in order to derive the general equation for two-dimensional models
(2.1).

the vorticity field. In § 3, we describe how the models are implemented in a numerical
code and perform a convergence test under grid refinement to test the reliability of
the whole system. In § 4, PSM2000 is used to recover experimental results on the
free decay of isolated vortices of Sommeria (1988). Section 5 is devoted to the study
of the complex flow involved in the MATUR experiment developed in Grenoble. In
particular, we show how local and global recirculations re-shape the flow, firstly by
the spectacular smoothing effect theoretically described in § 2, and secondly via the
additional dissipation induced by the thinning of the boundary layers formed on the
vertical sidewalls which confine the flow.

2. Two-dimensional models and properties
2.1. General configuration and averaged equations

A fluid of density ρ, kinematic viscosity ν and electrical conductivity σ is assumed
to flow between two parallel electrically insulating plates (spacing a) orthogonal to
the uniform magnetic field B. As explained above, we state that B is vertical for
simplicity of description but there is no gravity effect. For strong enough magnetic
fields, the velocity is independent of the vertical coordinate z, except in the thin
Hartmann layers (thickness aHa−1, where Ha is the Hartmann number) located
on the horizontal plates. The velocity in the core (i.e. outside these layers) is then
close to the averaged velocity between z = 0 and z = 1 to a precision of Ha−1 (lengths
are normalized by a). A good model of the dynamics is then obtained by averaging the
horizontal components of the Navier–Stokes equations between the two plates. The
starting point of such a two-dimensional model is the momentum equation for the con-
trol volume illustrated in figure 1. Its cross-sectional area (in planes z = const) is
uniform but of infinitesimal size. Rewriting the equation derived by Pothérat et al.
(2000) in non-dimensional terms (normalization by fluid depth a, typical velocity
U , time a/U , pressure ρU 2, shear stress (ρσU/a)Ha and electric current density
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σBU/Ha), we obtain:†

∂t ū⊥ + ū⊥ · ∇⊥ū⊥ + ∇⊥p̄ − N

Ha2
∇2

⊥ū⊥ − N

Ha
( j̄⊥ × ez) = −(u′ · ∇)u′ +

N

Ha
τW, (2.1)

where the overbar denotes z-averaging across the fluid depth (z = 0 to z = 1); u′

represents the departure from the averaged velocity ū, so that the average of u′ is
zero. Quantities averaged along z are by definition dependent only on x and y. The
corresponding Nabla operator ∇⊥ is two-dimensional and carries the subscript ()⊥.
Similarly, the same subscript on a vector indicates components perpendicular to the
magnetic field only.

The two important non-dimensional numbers mentioned in § 1 appear: the
Hartmann number Ha = aB

√
σ/ρν, and the interaction parameter N = σB2a/(ρU ).

The z-average of u⊥ · ∇⊥u⊥ does not reduce to ū⊥ · ∇⊥ū⊥: like in turbulence, a
‘Reynolds stress’ (u′ · ∇)u′ appears, involving the deviation u′ from the averaged
velocity. The first term on the right-hand side is effectively a Reynolds-stress term
arising from the departure to the average of the velocity along the field direction ez.
The non-dimensional wall stress term τW is the average of stresses on the planes at
z = 0 and at z = 1, and is dependent on the (x, y) coordinates only.

At low Rm, Ohm’s law is linear. The equations governing continuity of electric
current and incompressibility are also linear so they may be averaged to give

∇ · j̄⊥ = −jW , ∇ · ū⊥ = 0, (2.2)

1

Ha
j̄ = Ē + ū × ez, (2.3)

where jW is the current density injected at one or both of the confining planes and
E is a non-dimensional electric field. Taking the curl of Ohm’s law and using the
incompressibility condition, one sees that j̄⊥ is irrotational. It follows that there is a
potential ψ0 for j̄⊥ which satisfies Poisson’s equation, the source term being jW :

j̄⊥ = ∇⊥ψ0, ∇2
⊥ψ0 = −jW . (2.4)

The potential ψ0 is determined from the current source as the solution of this Poisson
equation (2.4), which is unique for a given current flux j̄⊥ · n at the lateral boundaries.
Then, using the vector field u0 of streamfunction ψ0, the Lorentz force in equation
(2.1) turns out to depend on the boundary condition on the electric current as
j̄⊥ × ez = u0.

At this point, no approximation has been made on the equations of motion.
The next step is to then express τW and the Reynolds-stress tensor using physical
models derived from asymptotic expansions performed on the full three-dimensional
equations of motion. We give two examples of the resulting two-dimensional models
in the next two paragraphs, which will be used to perform numerical simulations
throughout the rest of this paper. For more detail about the derivation of these
models, the reader is referred to Pothérat et al. (2000).

† A typical distance in the direction perpendicular to the field l⊥ = a/λ was necessary for other
aspects of the work presented in Pothérat et al. (2000). In the present paper, all distances are
normalized by a, which is equivalent to choosing λ = 1. We have also chosen a scaling which brings
the friction to the leading order. This differs from the original scaling in Pothérat et al. (2000) but
reflects the physics of the SM82 and PSM2000 models more accurately.
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2.2. The SM82 model

Sommeria & Moreau (1982) were the first to construct a two-dimensional model
based on the above ideas. They used the classical Hartmann layer profile for the
boundary layer model and assumed that the velocity and pressure in the core do not
depend on z (the two-dimensional core model). These two assumptions are of first
order in the limits N → ∞ and Ha → ∞, keeping the ratio Ha/N finite (i.e. assuming
that Ha and N are of comparable orders of magnitude). The Hartmann layer theory
states that τW is related to the excess current in the Hartmann layer by

τW = n( j̄ − j c
⊥) × ez = n(uc

⊥ × ez) × ez = −nuc
⊥. (2.5)

This relates τW to the core electric current j c and velocity uc; n is the number of
Hartmann layers in the flow: n = 1 if the upper plane z = 1 is a free surface, and
n = 2 if it is a rigid wall.

To make progress with the problem expressed in terms of averages, we need to
relate velocities to ū. An important feature of the Hartmann layers in this context
is that the velocity profile in the Hartmann layer is of the form u⊥ = ucf (z), where
f (z) = 1−exp(Haz) is the classical Hartmann layer profile which does not depend on
the location (x, y). It follows that the z-average velocity is proportional to the core
velocity with a constant coefficient:

ū = uc
⊥(1 − nδ∗),

where δ∗ is the displacement thickness of each Hartmann layer and equal to Ha−1. This
simple form also implies that the friction τW acts as a linear damping proportional to
the velocity, with dimensional characteristic time tH = (a2/ν)(1/Ha). Now neglecting
the Reynolds stress of order Ha−1N−1 for this particular profile, (2.1) yields the
so-called SM82 model in non-dimensional variables:

(∂t + ū⊥ · ∇⊥)ū⊥ + ∇p̄ − N

Ha2
∇2

⊥ū⊥ =
N

Ha
(u0 − nū⊥). (2.6)

The theoretical precision of this model is first order, i.e. an error of order
max(1/Ha, 1/N) is expected on the velocity and pressure. In spite of its simplicity,
this model is found to give good results in many well-known cases such as parallel
layers (Pothérat et al. 2000) but it fails to describe flows in which the traditional
Hartmann layer is modified by the presence of inertial effects, such as in rotating
flows for instance. The PSM2000 model described in the next section is constructed
to overcome this weakness.

2.3. The PSM2000 model

2.3.1. General equations

In the model developed by Pothérat et al. (2000), a new inertial Hartmann layer
profile is derived from a second-order approximation to the Navier–Stokes equations,
in the limits N → ∞ and Ha → ∞ (still keeping the ratio Ha/N finite). It incorporates
inertia as a perturbation and is therefore a refinement of the SM82 model. At
this order, the velocity far from the walls (i.e. z 	 Ha−1 and 1 − z 	 Ha−1) is still
independent of z. The final two-dimensional models is derived in a similar way as
SM82, although it involves more tedious steps. The most obvious difference between
the PSM2000 and the SM82 models is the appearance of cubic terms as well as
∂t (ū⊥ · ∇⊥ū⊥) terms. They come from the additional terms accounting for inertia in
the modified Hartmann layer profile. The latter are proportional to ū⊥ · ∇⊥ū⊥ and
∂t ū⊥ so that when this profile is used to evaluate the u′ · ∇u′ in (2.1), this yields the
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final form of the PSM2000 equations:†

∇⊥ · ū⊥ = 0, (2.7)

(∂t + ū⊥ · ∇⊥)ū⊥ +∇⊥p̄ − N

Ha2
∇2

⊥ū⊥ =
N

Ha
(u0 −nū⊥)+

n

HaN

(
7

36
Dū⊥ +

1

8
∂t

)
ū⊥ · ∇⊥ū⊥

(2.8)
where the operator Dū⊥ is defined as

Dū⊥ : F 
−→ Dū⊥ F = (ū⊥ · ∇⊥)F + (F · ∇⊥)ū⊥. (2.9)

Of the two new terms which appear, compared to SM82, we are mainly interested
in the one with the operator Dū⊥ , which accounts for the effects of classical Ekman
pumping when a vortex stands over a boundary layer. The advantageous feature of
PSM2000 is that the effects are described locally, which allows us to determine their
influence on any vorticity field. Most of the new results presented in this paper come
from the study of this term.

The model is more precise than SM82, in the sense that velocity and pressure should
be evaluated with an error of order max(1/(HaN ), 1/N2, 1/Ha2). In the practical cases
studied hereafter, N is in fact smaller than Ha so that the corrections to the velocity
involving 1/N are more important than those involving 1/Ha. It can be shown that the
terms involving 1/Ha merely improve the precision of the model but do not account
for any new phenomenon, as opposed to the 1/N terms which carry the effects of
the local three-dimensional recirculations (Pothérat et al. 2000). An analytical model
for Hartmann–Bodewädt layers can be derived from the present model (for the basic
theory of Bodewädt layers, see Greenspan 1969). Comparison of the latter with fully
nonlinear simulations in the axisymmetric case has shown that (2.8) is satisfactorily
valid if the value of the interaction parameter N remains at least of the order of unity
(Davidson & Pothérat 2002).

It should be noticed that one of the main advantages of the SM82 and PSM2000
models is that both rely on asymptotic expansions performed on the Navier–Stokes
equation without any kind of empirical parameter, which allows us to quantify their
precision using non-dimensional numbers N−1 and Ha−1.

2.3.2. Effect on the vorticity field

We shall now characterize the PSM2000 model by showing how the local
recirculations it accounts for affect the vorticity field. The first step consists in deriving
the equation satisfied by the average vorticity ωez = ∇ × ū⊥ from the two-dimensional
model (2.8). This equation is obtained by taking the curl of (2.8), and using the
identity Dū⊥ F = ∇⊥(ū⊥ · F) − ū⊥ × ∇⊥ × F − F × ∇⊥ × ū⊥, as well as ∇⊥ · ωez = 0:

(∂t + ū⊥.∇)ω − N

Ha2
∇2

⊥ω

= − N

Ha
(ω0 − nαω) +

7

36

n

HaN
([ū⊥ · ∇⊥ū⊥] · ∇⊥ω + (ū⊥ · ∇⊥)(ū⊥ · ∇⊥ω)

+ ω∇⊥ · [ū⊥ · ∇⊥ū⊥]) +
1

8

n

HaN
∂t (ū⊥ · ∇⊥ω). (2.10)

† In fact, the pressure, velocity and time appearing in these equations differ from the averaged
quantities by a constant factor of the form 1 + O(Ha−1). This small discrepancy is however not
relevant here, and is neglected for simplicity throughout the rest of the paper, as it is not associated
to any new physical effect.
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The additional terms are direct consequences of the secondary flows: as the nonlinear
terms in the expression for the velocity profile in the inertial Hartmann layers are
proportional to ū⊥ · ∇⊥ū⊥ and ∂t ū⊥, the [ū⊥ · ∇⊥ū⊥] · ∇⊥ω and ∂t (ū⊥ · ∇⊥ω) terms
represent the amount of vorticity conveyed to the point (x, y) from its neighbourhood
by secondary flows, while the (ū⊥ · ∇⊥)(ū⊥ · ∇⊥ω) terms represent the transport of
vorticity due to these recirculations being carried by the main flow. The inertial model
of the Hartmann layer also predicts a vertical velocity proportional to ∇⊥ · [ū⊥ · ∇⊥ū⊥]
at the edge of the layer. The ω∇⊥ · [ū⊥ · ∇⊥ū⊥] expression is a source term related to
the vorticity created in the core by this phenomenon.

The next step is to seek the effects of the nonlinear terms of (2.10) on a vortex spot
taken to be a local extremum of vorticity. We assume that the vorticity field exhibits
a local extremum and that this extremum is conveyed by a background flow V ex .
The extremum is thus located at the point (x0 + V t, y0), i.e.

∂xω(x0 + V t, y0) = ∂yω(x0 + V t, y0) = 0. (2.11)

In addition, the background flow V ex is considered constant and large in front of
the local velocity variations:

ū⊥ = V ex + v′(x, y, t), (2.12a)

∂xV (x, y, t) = ∂yV (x, y, t) = ∂tV (x, y, t) = 0, (2.12b)

‖v′(x, y, t)‖ � V, (2.12c)

so that the local velocity v′(x, y, t) = vxex + vyey satisfies the conservation equation:

∇⊥ · v′ = 0. (2.13)

The extremum condition (2.11) implies that the transport by secondary flows does
not occur:

[ū⊥ · ∇⊥ū⊥] · ∇⊥ω(x0 + V t, y0) = 0. (2.14)

Expanding ω∇⊥ · [ū⊥ · ∇⊥ū⊥](x0 +V t, y0) and (ū⊥ · ∇⊥)(ū⊥ · ∇⊥ω)(x0 +V t, y0) in terms
of the derivatives of ω and v′, and using (2.11), (2.12b) and (2.13) yields

ω∇⊥ · [ū⊥ · ∇⊥ū⊥](x0 + V t, y0) = 2V 2∂2
xxω + ω[2(∂xv

′
x)

2 + (∂xv
′
y)

2 + (∂yv
′
x)

2 − ω2],

(2.15a)

(ū⊥ · ∇⊥)(ū⊥ · ∇⊥ω)(x0 + V t, y0) = V 2∂2
xxω + 2V (∂xv

′) · ∇⊥ω

+ V v′ · ∇⊥∂xω + v′ · ∇⊥(v′ · ∇⊥ω). (2.15b)

Using the relation ∂t = V ∂x for the advected extremum, the unsteady term can be
rewritten as

∂t (ū⊥ · ∇⊥ω)(x0 + V t, y0) = V 2∂2
xxω + V (∂xv

′) · ∇⊥ω + V v′ · ∇⊥∂xω. (2.16)

The condition (2.12c) ensures that the terms proportional to V 2 on the right-
hand side of (2.15a), (2.15b) and (2.16) are arbitrarily larger than the others. Then
ω∇⊥ · [ū⊥ · ∇⊥ū⊥](x0 + V t, y0)  2V 2∂2

xxω, (ū⊥ · ∇⊥)(ū⊥ · ∇⊥ω)(x0 + V t, y0)  V 2∂2
xxω

and ∂t (ū⊥ · ∇⊥ω)(x0 +V t, y0)  V 2∂2
xxω so that the nonlinear term acts on the vorticity

as an anisotropic diffusion, in the direction of the background velocity, with related
diffusivity

η =
17n

24

Ha

N2
V

ν (2.17)
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where NV is the interaction parameter based on the average flow V . This confirms
that the additional terms are dissipative, as shown by Dellar (2004). The related
diffusivity can also be seen as a turbulent diffusivity which is determined the
by secondary flows. This extends the analogy with the usual turbulent Reynolds
stresses which are sometimes interpreted as a turbulent diffusion with related ‘eddy
viscosity’.

The main result of this section is that any elementary vortex of the flow is spread
by nonlinearities, so that the latter have a smoothing effect on the whole velocity
field. This is to be related to the results of the numerical simulations presented in
§ 5. Also, Dellar (2004) showed that the nonlinear terms in (2.8) induce a diffusion
along streamlines for small-amplitude waves. He also showed that PSM2000 shares
this feature with the model proposed by Benzi, Succi & Vergassola (1990) for two-
dimensional turbulence based on ideas from the Anticipated Vorticity Method of
Basdevant & Sadourny (1983). This model features additional nonlinear terms like
PSM2000 and describes well some oceanic and atmospheric flows. This suggests that
accounting for the three-dimensional recirculations in oceans and atmospheres could
lead to accurate two-dimensional models similar to PSM2000.

3. Numerical setup
3.1. The numerical model

We use the finite volume code FLUENT/UNS featuring a second-order upwind
spatial discretization. The cases studied are unsteady and the time scheme is a
second-order implicit pressure–velocity formulation. Within each iteration, equations
are solved one after the other (segregated mode) using the PISO algorithm proposed
by Issa (1986). Briefly, PISO is a predictor–corrector method which substantially
reduces the number of iterations per time step, especially in unsteady calculations, by
decomposing each iteration into one prediction step and several (two here) correction
steps: in the prediction step, a first (predicted) velocity field is obtained by solving
the momentum equations in which the value of the pressure is taken from the
result of the previous iteration (the equations are then implicit for the velocity
but explicit for the pressure). In the next step, a corrected pressure is obtained by
solving an explicit Poisson equation, in which the velocity is the result from the
prediction step. A second (corrected) velocity field is solution of the momentum
equations in which inertial terms are evaluated using the velocity obtained in the
prediction step and in which the pressure is the corrected one. This last step (called
correction) is iterated one additional time. Note that this algorithm is in fact a modified
version of the one described by Issa (1986) in which the prediction–correction is
applied in between time steps rather than in between iterations within the same time
step.

The additional terms in (2.8) are modelled the following way:
(i) The Hartmann friction −ū⊥/tH is expressed implicitly, i.e. as −ū(n+1)

⊥ /tH at cur-
rent time t (n+1), where ū(n+1)

⊥ is the velocity variable at the current time step, on which
the PISO iterations are performed.

(ii) The ū⊥∇⊥ · ū⊥ terms appearing in the PSM2000 model additional terms and
their gradients are treated implicitly in time and updated at the end of each iteration
within the time steps, using the latest values of the velocity obtained from the
resolution of the pressure–velocity equations by the PISO algorithm. These terms are
therefore not modified during the PISO iterations.
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Momentum equations
Poisson equation for p

solved using (u · �⊥ u) f 

Gradients of (u · �⊥ u)f 
updated

loops

PISO

Convergence test

Iterations inside time step n + 1

Not converged

Converged

(u · �⊥ u) f   terms of the forcing
updated

New time step
t = t (n) + ∆t = t(n+1)

Figure 2. Algorithm used to solve equation (2.8) numerically. (u · ∇⊥u)f represents the
inertial terms appearing in the additional terms of PSM2000.

(iii) The additional time derivative is second-order implicit, i.e. expressed at time
t (n+1) as

[∂t (ū⊥ · ∇⊥)ū⊥]t (n+1) =
1

2∆t
(3[(ū⊥ · ∇⊥)ū⊥]t (n+1) − 4[(ū⊥ · ∇⊥)ū⊥]t (n) + (ū⊥ · ∇⊥)ū⊥]t (n−1) ),

where the superscripts (n) and (n − 1) refer to the variables taken from the two
previous time steps.

A summary of the algorithm is sketched in figure 2.

3.2. Tests on the numerical model

We shall now investigate the ability of the numerical system to solve equations
(2.8). To this end, we perform a convergence study under grid refinement toward
an analytical solution. As these equations are both new and complex, no exact
analytical solution has been exhibited up to now. We therefore follow the procedure
recommended by Roache (1997) which consists in specifying an analytical velocity
field and adjusting the forcing term (here u0 in (2.8)) so that the specified field is
solution of the equations. We choose the case of a flow confined between two co-
rotating vertical cylinders (respective radius rint and rext ) and two horizontal plates
(at z = 0 and z = 1), placed in a vertical uniform magnetic field. Equations (2.8) then
apply on the two-dimensional annulus rint < r < rext . The parameters rint , rext , Ha and
N can be set for the solution to exhibit a significant Ekman pumping, which is just the
kind of phenomenon the PSM2000 model is supposed to account for. The reference
solution consists in an azimuthal wave superimposed on a 1/r2 axisymmetric radial
profile. Numerical constants are adjusted so that the wave amplitude is 10 % of the
azimuthal velocity at the inner cylinder, and so that the velocity is tangent to the



124 A. Pothérat, J. Sommeria and R. Moreau

104

102

Numerical simulations

ε

Number of cells in the mesh 

Interpolation ε = 4.1 ncell
0.64

Figure 3. Time average of the L2 norm of the relative error ε = ‖Unumeric − Uref‖2/‖Uref‖2

in numerical simulations, compared to the reference analytical solution (3.1) versus number of
cells in the mesh.

walls, located at r = rint and r = rext:

vθ (r)

vθ (rint)
=

r2
int

r2
+ 0.407(r − rint)(r − rext)

(
r − rint + rext

2

)
cos(7θ + 3.5t)

vr (r)

vθ (rint)
=

2.4929

r

(
r2
intr

2
ext − 2rrintrext(rint + rext) + r2

(
r2
int + r2

ext + 4rintrext

− 2r3(rint + rext) + r4
))

sin(7θ + 3.5t) (3.1)

The initial conditions at t = 0 and the Dirichlet boundary conditions at the walls
for the velocity are chosen to match (3.1). These conditions avoid the occurrence
of a boundary layer along the cylinders for which no analytical solution would be
known. Setting Ha = 111, N = 12 (N is constructed using vθ (rint) and rext/rint = 10
ensures that the region rext − r � rext is dominated by viscosity while nonlinear terms
dominate the dynamics near the inner cylinder rint − r � rint). The convergence tests
are performed on a structured mesh with twice as many azimuthal nodes as along one
radius. The time steps are adjusted to satisfy the Courant–Friedrich–Lewy condition
for the maximal azimuthal phase velocity of the imposed wave (0.018 s, 0.0128 s,
0.009 s, 0.007 s for cases with respectively 50, 70, 100 and 140 radial modes). Each
calculation runs over a full time period of the imposed solution. Figure 3 shows that
the L2 norm of the relative error over the domain decreases approximately as n−0.64

cell

where ncell is the number of elements in the mesh. This confirms the reliability of
the numerical system. It is however important to notice that the convergence is not
of second-order spatial accuracy, although all quantities are being discretized at this
order. The reason for this precision loss is that the Dū⊥ ū⊥ · ∇⊥ū⊥ terms appearing in
(2.8) are calculated by taking the gradient of the ū⊥ · ∇⊥ū⊥ variables. Although these
variables are known to second-order precision, the resulting gradients are not. The
accuracy achieved is sufficient for our purpose however, which is to model physical
experiments rather than to build a refined numerical model. Such a refined numerical
work based on the PSM2000 model can be found in Dellar (2004).
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Figure 4. Experimental device of Sommeria’s vortex study: cross-section of the circular tank
with a schematic representation of the current supply. A typical current streamline passing
through the Hartmann layer is also represented (dashed). 1: mercury, 2: electrically conducting
sidewall, 3: electrode for current injection, 4: electrically insulating bottom wall.

4. Simulation of the free decay of isolated vortices generated
by a single electrode

4.1. Experimental device of reference

In the next two sections, we shall use the numerical implementation of both PSM2000
and SM82 described in the previous section to recover the results of two MHD
experiments, which could not be modelled by classical theories. We first perform the
simulations on Sommeria’s (1988) electrically driven vortices using PSM2000 only. The
experimental setup consists of a cylindrical tank (diameter 2R =120 mm) filled with
mercury (depth a =19.2 mm) with an insulating bottom plate, an upper free surface
(n= 1) and an electrically conducting circular wall at r =R (see figure 4). Electric
current is injected into the mercury via a small electrode (diameter 2re =2.5mm)
located in the bottom plate. The injected current jW can be approximated as a Dirac-
delta function centred at the edge of the electrode r = re, with integral equal to the
total injected current I : jW = I/(2πre)δ(r−re). The corresponding forcing is azimuthal
and obtained from the solution of (2.4) which yields

∀r > re, u0 = − B

ρa

I

2πr
tH eθ . (4.1)

The forcing is applied until a steady regime is reached. This flow is quite stable and
remains laminar. At the end of the run, the forcing is switched off and the flow decays
by Hartmann friction. The experimental parameters are summarized in table 1 with
the corresponding non-dimensional parameters and numerical time steps. (We give
here the values of Nc = N/

√
Ha, which is scaled on the vortex core thickness of order

aHa−1/2, as Sommeria (1988) found that it is the relevant parameter that governs the
recirculating effects in the vortex).
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B (T) 0.0575 0.115 0.23 0.48

Ha 28.41 56.82 113.6 237.2
tH (s) 110.9 55.45 27.72 13.28
Nc (I = 50 mA) 0.017 0.034 0.068 0.14
Nc (I = 12.5 mA) 0.569
N (I = 50 mA) 0.091 0.256 0.724 2.16
N (I = 50 mA) 8.76
Time step (s−1) (I = 50 mA) 0.043 0.065 0.076 0.080
Time step (s−1) (I = 12.5 mA) 0.086

Table 1. Experimental and numerical parameters for the isolated vortices of Sommeria (1988).
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Figure 5. Time-decay of the resistance between the central electrode and the sidewall for sev-
eral magnetic fields (injected current before decay is I = 0.05A unless otherwise specified). For
each curve, resistance is normalized by its value at equilibrium, at the moment the forcing is
switched off (t = 0 on the graphs). The exponential decay is the one predicted by the SM82
model.

4.2. Mesh and boundary conditions

The mesh is made of quadrilateral elements, unstructured for r < 1.64 mm and struc-
tured for 1.64 mm < r < R. The radial resolution is 105 points, 25 of which are
devoted to the boundary layer located at r = R. These points are spread in the layer
according to a geometric sequence of ratio 1.3 starting at r = R with an initial interval
of 5 × 10−6 mm. The azimuthal resolution is 150 points. The time step is chosen so
that the related cutoff frequency matches the spatial cutoff frequency for the maximal
flow velocity (Courant–Friedrich–Lewy condition). Values are given in table 1. The
usual no-slip condition at the wall r = R is applied.

4.3. Free decay

Figure 5 shows the decay of electric resistance between the central electrode and the
conductive sidewall. This quantity is derived in Sommeria (1988) from the velocity
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field as R = (ψ̃wall − ψ̃ electrode)/I = −1/(IB)
∫ R

b
uθ dr (where ψ̃ is the dimensional

electric potential) using the fact that there is no current outside the Hartmann layer
because the flow is two-dimensional. The numerical simulations from the model show
that R decays strongly at early times, and the decay rate then stabilizes around
(0.9tH )−1. This agrees very well with the experiment. Also, the small discrepancy
between PSM2000 and the experiment increases with N−1

c . This is precisely what one
should expect as PSM2000 is derived from asymptotic expansions on Ha−1 and N−1.
This tends to confirm that these non-dimensional parameters provide a good measure
of the precision of the model.

Physically, the strong damping at early times – weaker for weak currents and strong
fields – is explained by the presence of Ekman recirculations. Ekman pumping induces
a centrifugal flow in the core flow as well as a centripetal flow in the Hartmann layers.
The mass conservation requires that the vertically integrated mass fluxes related to
these two radial flows be the same. As the velocity is smaller in the Hartmann layer,
the net effect of Ekman pumping is a centrifugal transport of angular momentum. This
has two consequences: The first one is that the wall side boundary layer is squeezed by
this transport so that the wall friction is increased. The recirculations are important
when the vortex is still rotating fast, so that angular momentum is conveyed toward the
side layer, which increases dissipation and enhances the damping. This phenomenon
is however not very strong in the present case since the velocities near the lateral wall
are rather small, unlike the MATUR case described in § 5.

When the flow has been significantly damped, the Ekman recirculation disappears
and the wall side layer goes back to its typical Ha−1/2 thickness so that the associated
dissipation becomes small compared to the Hartmann damping. The decay rate of
the velocity then matches approximately the t−1

H value predicted by the linear theory.
The second consequence is that azimuthal velocities initially decrease much faster for
points which are closer to the centre as shown in figure 6. The reason is that the
recirculations arise from centripetal jets in the Hartmann layer, which are therefore
stronger at the centre of the tank. This also explains why recirculations tend to
noticeably ‘broaden’ the vortex core, as measured by Sommeria (1988) and confirmed
theoretically by Pothérat et al. (2000).

5. Numerical simulations for the MATUR experimental setup
5.1. Experimental device of reference

We now come to the main part of this work, where PSM2000 and SM82 are both
compared and used to recover and explain the results obtained by Alboussière,
Uspenski & Moreau (1999) with the MATUR (MAgnetic TURbulence) experimental
setup developed in Grenoble. MATUR is a cylindric container (diameter 2R = 0.22 m)
with an electrically insulating bottom and conducting vertical walls (figure 7). Electric
current is injected at the bottom through a large number of point-electrodes regularly
spread along a circle the centre of which is on the axis of the cylinder. It is filled
with mercury (a = 1 cm depth) and the whole device is placed in a steady uniform
vertical magnetic field. The injected current leaves the fluid through the vertical wall,
inducing radial electric current lines, and gives rise to an azimuthal force on the fluid
in the annulus between the electrode circle and the outer wall.

The forcing is similar to the case of § 4 but the radius where the current is injected
re = 0.093 mm is much larger so that a free shear layer is produced with a vorticity
sheet at r = re. Instability is associated with this vorticity extremum. By contrast, in
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Figure 6. Angular momentum normalized by Γ0 = I/(2π(ρσν)1/2). The radial profiles of angu-
lar momentum (a) are obtained numerically and show that the main effect of the recirculations
is to broaden the vortex core. Injected current before decay is I = 0.05A unless otherwise
specified. (b) Time-decay of azimuthal velocity for different radial positions, just after the
forcing is switched off (referred to as t = 0 here), obtained from the numerical simulations
of the PSM2000 model at B = 0.23T. Secondary flows are stronger at the centre, where the
velocity decays faster.

the case of § 4, the vorticity extremum was at the centre of the tank, leading to a
stable flow.

The annulus of fluid r ∈ [re, R] rotates and gives rise to a concave parallel wall
side layer along the outer wall (r = R) and a free parallel shear layer at r = re. The



Two-dimensional magnetohydrodynamic flow simulations 129

1

a

43

a/Ha

a/Ha

B

R re

a/√Haa/√Ha

2

Figure 7. Radial section of the MATUR experimental setup. Some typical current streamlines
passing through the Hartmann layers are also represented (dashed). 1: mercury, 2: electrically
conducting sidewall, 3: current injection electrode, 4: electrically insulating bottom wall.

I (A) 3 10 20 30
Usm82 (m s−1) 0.054 0.18 0.36 0.54
N2d 4.6 1.4 0.67 0.47
Time step (s−1) 0.025 0.01 0.01 0.007

Table 2. Injected current, azimuthal velocity, interaction parameter and time step for the
simulations of the MATUR experiment.

upper surface is rigid so that two Hartmann layers (at the top and the bottom) are
present (n = 2 ).

The field is B = 0.17 T (i.e. Ha =45.14) and the fluid is at rest at the initial state
t = 0. Numerical simulations are performed for a total injected current I in the range
[3 A, 30A]. An approximate azimuthal velocity Usm82 = I/(2πR

√
σρν) and associated

global angular momentum per unit of height Lsm82 = Usm82πR(R2 − re2) can be
derived from the theory in Sommeria & Moreau (1982) (see Pothérat et al. 2000),
the order of magnitude of which remains valid within the framework of PSM2000
(see table 2). The relevant interaction parameter is scaled on the horizontal length
N2d = σB2R/(ρUsm82). The horizontal velocity Usm82 is used for convenience, but this
is an overestimate, so that the physical interaction parameter should be somewhat
higher than N2d .

A more comprehensive description of the experimental device and results can be
found in Alboussière et al. (1999).

5.2. Numerical setup

As the geometry is similar to that of Sommeria’s experiments described in § 4, we
use the same mesh and the same boundary conditions at the wall located at r = R.
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Figure 8(a–d). For caption see facing page.

This mesh ensures that the wall side layer located at r = R is always described by
at least 12 points. In order to reduce the CPU time, the free shear layer located at
r = re is not finely meshed; it is thin in the laminar regime (thickness aHa1/2) which
only occurs in the first few seconds of each case (out of the more than one minute
duration of the experiment). The layer then quickly destabilizes and is replaced by
large vortices with relatively smooth velocity gradients which do not require mesh
refinement. This simplification might make the modelled layer slightly more unstable
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Figure 8. Evolution of the flow with time from numerical simulations for I = 30 A, and
B = 0.17T. Left column: vorticity fields obtained using SM82; central column: vorticity fields
obtained using PSM2000; right column: vertical velocity fields at the edge of the Hartmann
layer, computed from the horizontal velocity field given by the simulation of (2.8). (a) t = 0.01 s,
(b) 4 s, (c) 5 s, (d) 6 s, (e) 10 s, (f ) 70 s.

than the real one but does not significantly affect the quasi-steady state we are mostly
interested in. As in § 4, the time step is chosen to satisfy the Courant–Friedrichs–Lewy
condition, so that the temporal cutoff frequency matches the spatial cutoff frequency
(see table 2). All time-averaged values are calculated in the steady regime reached after
a time of 3tH . Averages and RMS quantities are then evaluated over a period of tH .

5.3. Overview of the simulated flow

The electric current is injected at t = 0 and remains constant during the whole
simulation. After a few seconds, the azimuthal velocity of the external annulus reaches
the critical value that destabilizes the circular free shear layer located at re = 0.093 m.
This Kelvin–Helmholtz instability then produces small cyclonic vortices, merging into
bigger ones (see figure 8).

For low injected currents (a few Ampères), SM82 and PSM2000 predict flows which
are very close to each other, but for higher values of I the rotation becomes faster
and Ekman pumping becomes important. As a first effect, the vorticity structures
elongate in the direction of the mean flow (see figure 9, I =30 A) in the simulations of
the PSM2000 model. Notice that this effect does not affect the pressure field directly.
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When the phenomenon is strong enough, vortices cannot move within the rotating
reference frame anymore, so that the final state predicted by the PSM2000 model is
made up of a few azimuthally elongated vortices in nearly solid body rotation. For
the same current, the SM82 model predicts a higher rotation speed and a much more
chaotic flow, involving circular vortices of different sizes merging into one another.
According to the results obtained using SM82, boundary layer separations also appear
for I = 30 A, at the sidewall, which lead to the injection of big anticyclonic vortices
in the flow (These vortices appear as black patches in the pictures of the left column
in figures 8 and 9). The lifetime of such vortices is of the order of magnitude of the
inertial time. This first view indicates clearly that the smoothing property of the
PSM2000 model shown in § 2.3.3 can drastically stabilize the flow, to the point of
literally suppressing turbulence. We shall now examine the results more quantitatively.

5.4. Mean velocity profiles

5.4.1. Core flow

Figure 10 shows the radial profiles of the RMS of the azimuthal velocity obtained
by numerical simulations based on the SM82 and PSM2000 models and by the
experiment of Alboussière et al. (1999) respectively. SM82 overestimates the velocity
once I reaches approximately 20 A, whereas PSM2000 remains in fairly good agree-
ment with experimental results although it slightly underestimates the velocity in the
inner annulus, near the injection electrodes at re. As a consequence, the inner half
of the free shear layer is a little thinner than in the experiments. A more crucial
difference is that the SM82 model predicts a wall side layer of thickness aHa−1/2

(which corresponds to the linear parallel layer theory, see for instance Moreau 1990),
and which therefore does not depend on I , whereas the radial outward angular
momentum transport associated with secondary flows squeezes the wall side layer
dramatically in the results obtained using the PSM2000 model (see § 5.6).

5.4.2. Squeezed wall side layers

The vertical velocity at the interface between the Hartmann layer and the core
(for a mathematically rigorous definition of this interface, see Pothérat et al. 2002)
is computed from the solution of the numerical simulation, using the expression for
w(z = 0) provided by the PSM2000 model (see Pothérat et al. 2000):

w(z = 0) = −(5/6)(a3/ν)(1/Ha3)∇⊥ · [(ū⊥ · ∇⊥)ū⊥].

Figure 11 shows that a strong Ekman pumping occurs in the rotating annulus
(re < r < R). The small oscillation appearing in the profile at r  re indicates that
each big vortex conveyed by the mean flow is subject to a small Ekman pumping
which is added to the global recirculation. This induces an additional radial flow. As
the vertical velocity is oriented toward the core in the whole flow, mass conservation
is satisfied thanks to a strong vertical jet occurring at the wall side layer, this being
the only area in the flow where w(z = 0) � 0.

Also, the boundary layer at r = R is squeezed by recirculations as shown in figure 12.
The mechanism which explains this is the same as for isolated vortices described in
§ 4.3.

As a consequence, the flow injected in the core outside the wall side layer loops
back to the Hartmann layers in a reduced horizontal area. This makes the already
high vertical velocity maximum (oriented toward the Hartmann layers) in the wall
side layer even higher, as shown on figure 11.
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Figure 9. Quasi-steady states of the flow for B = 0.17 T for different values of the injected
current, obtained from numerical simulations. Left column: vorticity field; central column: pres-
sure field; right column: vertical velocity field at the edge of the Hartmann layer. The dark areas
surrounded by blue colour in the vorticity field represent negative vorticity (off colourscale).
Separation of the boundary layer located at the sidewall surrounding the flow clearly appears
for I = 3 A (PSM2000) and I = 30 A (SM82). (a) I = 3 A, PSM2000, (b) I = 10 A, PSM2000,
(c) I = 30 A, PSM2000, (d) I = 30 A, SM82.

Figure 12 shows the dramatic thinning of the side boundary layer. Under
the assumption of axisymmetry, the PSM2000 model predicts a thickness of
(36/7)(N/Ha)Rn3/2 (here n = 2) for the parallel layer at the sidewall (see Pothérat
et al. 2000, § 4), which is far thinner than the aHa−1/2 thickness of linear parallel layers.
This result however does not apply directly here, as it ignores the extra recirculations
induced by local vortices mentioned in this section. It is however noteworthy that the
modified layer keeps an exponential shape, as assumed by Pothérat et al. (2000) in
order to derive the layer thickness in the axisymmetric case. We shall now see that
the phenomenon of wall side layer thinning is much more significant in the MATUR
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experiments than in the case of Sommeria’s vortices (see § 4) as it reaches a point
where it significantly alters the global dissipation.

5.5. Effect of the secondary flows on global quantities

5.5.1. Quasi-steady state

The direct consequence of the wall side layer being squeezed is that velocity gra-
dients are strongly increased near the wall and so is the local shear stress. A good
global description of this effect is provided by the balance of the total angular
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Figure 12. Radial profiles of azimuthal velocity within the wall side layer (averaged over
time at quasi-steady state). Velocities are normalized by Usm82. This graph clearly shows that
the higher the forcing, the thinner the boundary layer and the more the maximum velocity is
reduced, compared to flows where recirculations are neglected (which would have a maximum
velocity closer to Usm82). The smooth solid line represents the exponential profile obtained
analytically from the SM82 model under the assumption of axisymmetry (typical thickness
Ha−1/2). Remark: The actual numerical computations always rely on at least 10 points to
resolve the wall side boundary layer. The apparent lack of precision on the graph is a simple
post-processing issue.

momentum (denoted L(t), and L∞ at quasi-equilibrium). Hence, we shall now investi-
gate how both transients and asymptotic values are affected by local and global
recirculations.

Figure 13 shows a comparison between the global angular momentum at quasi-
equilibrium L∞ measured in the experiment, analytical results (derived from SM82
and PSM2000 with the assumption of axisymmetry by Pothérat et al. 2000), and our
numerical simulations. The theoretical value of PSM2000 is about 15 % different from
the experimental results whereas the full simulation of (2.8) gives a far more accurate
result. The main difference between the two models is the axisymmetry assumption:
in the full simulation, the recirculation associated with cyclonic vortices causes
dissipation in the wall side layer so that the flow is slightly more damped than in the
axisymmetric case. Another important effect of recirculations is the ‘stabilization’ of
the flow. Indeed, figure 14 shows that the amplitude of the oscillations of the global
angular momentum at equilibrium is strongly reduced, compared to SM82 results,
which corresponds to the observation that the flow is less chaotic when significant
recirculations occur. Global enstrophy (resp. energy) oscillates by around 5 % (resp.
10 %) at 3 A with PSM2000 and 30 A with SM82. This oscillation falls below 0.1 %
(resp. 1 %) for I = 30 A with PSM2000.

This is a consequence of the local damping of disturbances pointed out in § 2.3.2,
which does not appear in SM82 simulations.



136 A. Pothérat, J. Sommeria and R. Moreau

0.2 0.3 0.4 0.6 0.8 1 2 3 4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Interaction parameter, N2d 

G
lo

ba
l a

ng
ul

ar
 m

om
en

tu
m

, L
/L

sm
82

MATUR experiment
Numeric (PSM2000)
Analytical (PSM2000 axi)
SM82 theory
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affect the flow very much for I = 3A. On (b), quantities are normalized by their value at
quasi-equilibrium, averaged over a period of tH . The thickness of the lines give an idea of the
numerical precision of the result (about 0.1 %).
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Figure 15. Transient time obtained numerically after switching on the forcing on a fluid at rest
(stars) and nonlinear time tnl derived from PSM2000 under the assumption of axisymmetry,
versus total interaction parameter.

5.5.2. Transient time

The SM82 model predicts that the system should reach the quasi-steady state in
a time of the order of tH . When important Ekman pumping occurs, the wall side
layers can become thin enough to significantly increase the global dissipation. This
results in shortened response time of the flow. This tendency is illustrated in figure 15
which shows that the typical response time of the flow near quasi-equilibrium varies
approximately as N3/2 (in practice, this time is obtained by measuring the slope of the
L(t)−L(t → ∞) curve near equilibrium in a log-log diagram). Using the axisymmetric
assumption, the evolution equation for the angular momentum derived from the
PSM2000 model can be linearized around the quasi-steady state: this provides a
response time varying as N 2/3Ha1/3. The reason for the difference is again that the full
numerical simulation accounts for local recirculations, added to the recirculation due
to global rotation by each vortex. As discussed in § 5.4.2, these additional recirculations
make the wall side layer even thinner and increase the wall shear stress compared to
the axisymmetric case.

5.6. Stability of the free shear layer

The axisymmetric free shear layer located at r = re is subject to a Kelvin–Helmholtz
instability, which leads to the growth of cyclonic vortices along the layer. In order
to get a rough estimate of the stability condition, the radial profile of azimuthal
velocity is assumed linear and the layer is assumed to be of thickness δ = aHa−1/2.

Without viscous or electromagnetic effects, the layer is unconditionally unstable. The
most unstable radial wavenumber k and the related growth rate σc are given by (see
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Chandrasekkhar 1961):

kδ = 0.8, (5.1a)

σc = 0.4
U

δ
. (5.1b)

In the MHD problem, the magnetic field tends to stabilize the flow because of the
Hartmann friction. Indeed, for small enough velocities (experimentally, these velocities
correspond to values of I below 0.2 A), the laminar parallel layer can be stable if t−1

H

is bigger than the frictionless growth rate:

0.4
U

a
Ha−1/2 <

1

tH
, (5.2)

or equivalently, using the Reynolds number Re = Ua/ν:

Re

Ha1/2
< 2.5. (5.3)

In other words, the piecewise linear profile chosen for the parallel layer becomes
linearly unstable when the Reynolds number based on its thickness exceeds the
threshold of 2.5. At B = 0.17 T, the typical size of the vortices appearing at the onset
of instability is given by (5.1a) and corresponds to 2.6 mm. Lieutaud & Néel (2001)
have performed an energetic stability study of the two-dimensional problem, using
a more realistic piecewise exponential profile. They find a stability threshold (below
which any arbitrary perturbation is damped) of Re/

√
Ha = 9 and a most unstable

wavelength of 2 mm. The fact that even under slightly different assumptions both the
linear and energetic stability threshold remain of comparable orders of magnitude
suggests that the free shear layer is indeed destabilized by infinitesimal perturbations
of typical wavelength close to the boundary layer thickness.

Finally, it is worth mentioning the effect of curvature: Liou (1994) has shown that
for stably curved layers (i.e. high-speed stream on the outside of the curvature) the
centrifugal force tends to slightly reduce the growth rate of the Kelvin–Helmholtz
unstable modes, which might increase the instability threshold, without affecting the
basic mechanism.

In both numerical simulations and experiment, the destabilized state is itself
unstable and the vortices merge until a small number of big structures is reached. The
choice of either SM82 or PSM2000 does not affect significantly the instability found
by numerical simulations. PSM2000 does lead to an earlier destabilization (t = 5 s at
30 A versus t = 4 s for the SM82 model), but this is due to the fact that nonlinear
effects tend to reduce the characteristic response time of the flow (see § 5.5.2) so that
the unstable regime is reached quicker with PSM2000. In the numerical simulations,
the laminar free shear layer is radially discretized with only two or three points as
explained earlier, so that the numerical profile is rather close to the piecewise linear
profile studied in this section.

5.7. Two-dimensional fluctuations

Radial profiles of RMS azimuthal velocity fluctuations are in good agreement with
experimental measurements (see figure 16): both exhibit two extrema at r =0.07 m
and r = re. The position r =0.07 m corresponds to the location inside the electrodes
ring where the average velocity is very low but perturbed by the edge of passing
vortices, which explains the important fluctuations of velocity. It is also clear that the
relative intensity of the velocity fluctuations decreases with decreasing N , i.e. when
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Figure 16. Radial profiles of RMS azimuthal (a) and radial (b) velocity fluctuations
(averaged over time at quasi-steady state), for several values of the injected current.

secondary flows become stronger. This phenomenon is more than likely related to
the smoothing effect theoretically predicted in § 2.3.2 and visible in figures 8 and 9. It
should also be noticed that the velocity fluctuations can be of the order of 1 cm s−1 or
less. At such low velocities, the experimental results are not as precise as for higher
velocities such as those in figure 12. The agreement between theory and experiment
should therefore be considered to be as good as one can expect.

The damping of turbulent fluctuations by local Ekman recirculations is more
visible when looking at the turbulent intensities plotted on figure 17. It shows the
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radial profile of 〈v′
rv

′
θ〉, the values of which are also strongly reduced by Ekman

recirculations. But it is also shown that for higher forcing, all non-zero values of
〈v′

rv
′
θ〉 are confined radially around the injection electrode. For I = 20 A and I = 30 A,

the intensity of the correlation decreases almost linearly with the distance to the
electrode. In other words, apart from the fluctuations due to the passage of big
vortices in almost solid body rotation, there are hardly any turbulent fluctuations left.
Moreover, the typical width of the vortices (indicated by the width of the peak in the
values of 〈v′

rv
′
θ〉) strongly decreases with increasing forcing.

Four distinct mechanisms dissipate energy in the flow: turbulent dissipation, friction
in the Hartmann layers, friction in the wall side layer and local dissipation by
secondary flows. The typical ratio between turbulent dissipation and Hartmann
damping is around 10−3, which confirms that turbulent dissipation is very small, as
expected in two-dimensional turbulence. The dissipation in the side layer is drastically
increased by the radial transport of angular momentum due to Ekman pumping. One
can get an idea of the importance of this dissipation by comparing the analytic values
obtained for the angular momentum at quasi-equilibrium using SM82 (which ignores
the recirculations) and PSM2000 (see figure 13). For I = 30 A, dissipation in the side
layer is of the order of the Hartmann dissipation. This analytical value is obtained
under the assumption of axisymmetry and therefore ignores the local dissipation
due to local recirculations. The fact that it does not depart significantly from the
experiment suggests that this local dissipation is rather weak.

5.8. Higher fields and turbulent Hartmann layer

For higher magnetic fields (B = 0.5T) and strong forcing (I = 30 A), the ratio Ha/N
becomes large (282). This ratio also represents the Reynolds number scaled on the
thickness of the Hartmann layer and it is well known that the Hartmann layer
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becomes turbulent when it reaches such values (250 according to the experimental
study of Hua & Lykoudis (1974), 380 according to the experiments of Moresco &
Alboussière (2004) and 390 according to the numerical work of Krasnov et al. (2004),
see also the theoretical work by Alboussière & Lingwood (2000)). Krasnov et al.
(2004) also found that even when the Hartmann layer becomes turbulent, the core
flow can still remain two-dimensional. This will indeed be the case if the turnover
time associated with three-dimensional velocity fluctuations remains smaller than the
typical bidimensionalization time. Sommeria & Moreau (1982) have shown that if k is
the non-dimensional wavenumber (normalized by 1/a) associated with one particular
structure, this structure is two-dimensional if k � N−1/3, which can be satisfied over
the whole spectrum of k even for values of Ha/N above the Hartmann layer stability
threshold.

For such high values of Ha/N , the global angular momentum computed from the
PSM2000 model exhibits a strong discrepancy with experimental results. The reason
is that the Hartmann layer becomes turbulent. The magnitude of nonlinear effects
due to Ekman recirculation is monitored using the interaction parameter N ∼ B2/U ,
which means that if the magnetic field is increased, the velocity has to increase as
B2 to observe nonlinear effects of the same magnitude. The Hartmann layer becomes
turbulent when the Reynolds number at the scale of the layer Re /Ha ∼ U/B ∼ B/N

exceeds a few hundred. For a fixed value of N (i.e. given relative recirculation
magnitude), this threshold is then lower for lower fields. In other words, for sufficiently
high magnetics fields, the Hartmann layer is already turbulent when values of U are
reached which are high enough to induce a significant Ekman pumping. Both SM82
and PSM2000 models rely on the assumption that the Hartmann layer is laminar and
therefore cannot represent the flow above the Hartmann layer stability threshold (see
figure 18).
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6. Conclusion
The comparison between the predictions derived from the PSM2000 model and the

experimental results of Alboussière et al. (1999) shows that the model achieves a good
accuracy for all measured quantities, and this is in spite of its relative simplicity. The
effects of both local (at the scale of large eddies) and global (at the scale of the whole
cell) recirculations are reproduced in a fairly realistic way. Moreover, the new model
allows us to point out quite simply the three-dimensional details of their mechanisms,
whilst retaining the simplicity of two-dimensional calculations. It is worth mentioning
here three of the major properties of this model. Firstly, the second-order nonlinear
terms yield a tendency to smooth the velocity gradients, which can ultimately erase the
chaotic behaviour of the flow and damp two-dimensional turbulence. Secondly, they
induce some additional dissipation within the parallel boundary layers in which the
velocity gradients are increased. Finally, it appears that the response time of the flow
is reduced, which seems to be related to the transport of any quantity by the secon-
dary flows. Broadly speaking, the quasi-two-dimensional turbulent flow tends to be
more homogeneous.

We now mention two questions which remain open. Firstly, the secondary centri-
fugal flows which characterize PSM2000 should certainly affect the transport of any
passive scalar quantity. This might be investigated by adding an energy equation
to (2.8) and the accuracy of the results might be checked by comparison with the
temperature measurements of Alboussière et al. (1999). Second, both SM82 and
PSM2000 fail to model the turbulence within the Hartmann layer when it is present.
Its consequence should be to increase the layer’s thickness and the wall friction. A new
MHD two-dimensional model could be derived from the model by Alboussière &
Lingwood (2000) for the turbulent Hartmann layer.

Finally, we emphasize that both examples of the SM82 and PSM2000 models not
only offer a method, but also prove that this method is flexible enough to make the
modelling of complex three-dimensional flows possible, as long as there is a local
model for the phenomenon involved (here we combine the MHD and rotation effect).

When applicable, this appears to the authors to be a good alternative to fully
three-dimensional simulations which require enormous computational resources. This
is all the more important as three-dimensional CFD is sometimes only possible at
the expense of rather unphysical approximations or numerical adjustments; whereas,
PSM2000-like models are rigorously derived from the equations thanks to well-
controlled approximations, which ensure reliability and clearly mark their area of
validity. Thanks to these features, the refined two-dimensional model has proven
accurate enough to point out a property which had not been mentioned before to
our knowledge: the nonlinear smoothing by local recirculations.

This method can also be extended to any kind of quasi-two-dimensional flow, such
as rotating flows. The analogy between the kind of flow described in this paper
and some geophysical flows (see Pothérat 2000) suggests that corrections such as
those featured in PSM2000 could turn out to be efficient in modelling oceans or
atmospheres. Dellar (2004) has indeed recently shown that PSM2000 exhibits a very
similar behaviour to the model developed by Benzi et al. (1990) for two-dimensional
turbulence.

The authors are particularly grateful to Martin Cowley for his active contribution
to the presentation of the two-dimensional models, as well as to the discussions
around the meaning of these models.
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